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Categorical Propositions

ASP : All S is P (universal affirmative)

ESP : No S is P (universal negative)

ISP : Some S is P (particular affirmative)

OSP : Some S is not P (particular negative)



Syllogisms

A syllogism is a rule of inference P1,P2 � C where P1, P2 and C

are categorical propositions.
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are categorical propositions.

More precisely, in a syllogism appear exactly three terms S , P

and M as follows:

- M must appear in both P1 and P2 but is not allowed to appear
in C .

- S must appear in both P2 and C , as the subject of the latter.

- P must appear in both P1 and C , as the predicate of the latter.



Syllogisms

A syllogism is a rule of inference P1,P2 � C where P1, P2 and C

are categorical propositions.

More precisely, in a syllogism appear exactly three terms S , P

and M as follows:

- M must appear in both P1 and P2 but is not allowed to appear
in C .

- S must appear in both P2 and C , as the subject of the latter.

- P must appear in both P1 and C , as the predicate of the latter.

Example:

OPM ,EMS � ISP



Valid Syllogisms

AMP ,ASM � ASP EPM ,ASM � ESP IMP ,AMS � ISP APM ,EMS � ESP

EMP ,ASM � ESP APM ,ESM � ESP AMP , IMS � ISP IPM ,AMS � ISP

AMP , ISM � ISP EPM , ISM � OSP OMP ,AMS � OSP EPM , IMS � OSP

EMP , ISM � OSP APM ,OSM � OSP EMP , IMS � OSP

AMP ,ASM � ISP APM ,ESM � OSP AMP ,AMS � ISP APM ,EMS � OSP

EMP ,ASM � OSP EPM ,ASM � OSP EMP , AMS � OSP EPM ,AMS � OSP

APM ,AMS � ISP



The calculus

S
ASP // P S

ESP// • Poo

S
ISP
•oo // P S

OSP
•oo // • Poo
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Example

AMP ,ASM � ASP

S
ASM // M M

AMP // P

S
ASM // M

AMP // P

S
ASP // P
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Example

EPM , ISM � OSP

S
ISM
• //oo M M

EPM// • Poo

S
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•oo // M

EPM// • Poo



Example

EPM , ISM � OSP

S
ISM
• //oo M M

EPM// • Poo

S
ISM
•oo // M

EPM// • Poo

S •oo OSP // • Poo
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Example

APM ,OSM � OSP

S •oo OSM // • Moo M P
APMoo

S •oo OSM // • Moo P
APMoo



Example

APM ,OSM � OSP

S •oo OSM // • Moo M P
APMoo

S •oo OSM // • Moo P
APMoo

S
OSP

•oo // • Poo



Example

AMP ,AMS � ISP



Example

AMP ,AMS � ISP

S M
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AMP // P



Example

AMP ,AMS � ISP

S M
AMSoo M

AMP // P

S M
IMMAMSoo •oo // M

AMP // P



Example

AMP ,AMS � ISP

S M
AMSoo M

AMP // P

S M
IMMAMSoo •oo // M

AMP // P

S
ISP
•oo // P



Terminology and notation

A syllogistic inference is any instance of the previous computation
process.



Terminology and notation

A syllogistic inference is any instance of the previous computation
process.

Syllogistic inferences will be henceforth represented by planar
diagrams like

S �

ASM // M
AMP // P

S
ASP

// P

S �M
AMSoo IMM

•oo // M
AMP // P

S
ISP

• //oo P



Recovering the valid syllogisms

Theorem

A syllogism is valid if and only if there is a (necessarily unique)
syllogistic inference from its premisses to its conclusion.



Recovering the valid syllogisms

Theorem

A syllogism is valid if and only if there is a (necessarily unique)
syllogistic inference from its premisses to its conclusion.

Sketch of proof: A syllogistic inference yields a diagram between ASP , ESP , ISP , OSP

in exactly the following cases:

S → M → P S ← • → S → M → P

S → • ← M ← P S ← M ← • → M → P

S → M → • ← P S ← M ← P ← • → P

S ← M ← • → P S ← • → S → M → • ← P

S ← • → M → P S ← • → S → • ← M ← P

S ← • → M → • ← P S ← M ← • → M → • ← P

S ← M ← • → • ← P S ← • → • ← M ← P



Some features of the calculus

- the calculus is algorithmic.
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- the calculus is algorithmic.

- the calculus allows the representation of the premisses of a
syllogism in any order.

Example: EMP , ISM � OSP

S P

M

•



Some features of the calculus

- the calculus is algorithmic.

- the calculus allows the representation of the premisses of a
syllogism in any order.

Example: EMP , ISM � OSP

S P

M

•

- the calculus easily extends to n-term syllogisms.
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Syllogistic inferences do not delete or create the bullet symbols.
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2

• Moo • //oo • P
OMP oo

S //
ESP

• Poo
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Non-valid syllogisms

Syllogistic inferences do not delete or create the bullet symbols.

Example: The syllogism OMP ,EMS � ESP is not valid.

S
EMS//

2

• Moo • //oo • P
OMP oo

S //
ESP

• Poo

Example: The syllogism EMP ,ESM � ASP is not valid.

S 2

ESM
•oo // M

EMP
•oo // P

S
ASP

// P



The rules of syllogism

- From two negative premisses nothing can be inferred.

- From two particular premisses nothing can be inferred.

- From a particular first premise and a negative second premise
nothing can be inferred.

- If one premise is particular, then the conclusion is such.

- The conclusion of a syllogism is negative if and only if so is
one of its premisses.
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Rules of syllogism

From two negative premisses nothing can be inferred.

S
ESM// • Moo M

EMP// • Poo

S
ESM// • Moo M

OMP
• //oo • Poo

S
OSM

• //oo • Moo M
EMP// • Poo

S
OSM

• //oo • Moo M
OMP

• //oo • Poo



The Square of Opposition
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The laws of the Square of Opposition

ASP , ISS � ISP

ESP , ISS � OSP







Subalternation

ASP ,OSP � OSS

ESP , ISP � OSS







Contradiction

EPP ,ASP � ESP Contrariety

EPP , ISP � OSP Subcontrariety



The laws of the Square of Opposition

Contradiction:

S
OSP

�

• //oo • Poo S
ASPoo

S
OSS

•oo // • Soo

Subcontrary:

S
ISP

�
• //oo P

EPP// • Poo

S
OSP

•oo // • Poo



Extending the calculus: n-term syllogisms

An n-term syllogism is a rule of inference

P1, . . . ,Pn−1 � C

in which P1, . . . ,Pn−1,C are categorical propositions any two
contiguous of which have exactly one term in common.

Notation: the appearing terms will be henceforth denoted by
T1,T2, . . . ,Tn.



Recovering the valid n-term syllogisms

Theorem

For every positive natural number n, an n-term syllogism is valid if
and only if there is a (not necessarily unique) pasting of syllogistic
inferences from its premisses to its conclusion.



Recovering the valid n-term syllogisms

Theorem

For every positive natural number n, an n-term syllogism is valid if
and only if there is a (not necessarily unique) pasting of syllogistic
inferences from its premisses to its conclusion.

Sketch of proof: For every positive natural number n, a syllogistic inference yields a
diagram between ASP , ESP , ISP , OSP in exactly the following cases:

- T1 → T2 → · · · → Ti → Ti+1 → · · · → Tn−1 → Tn.

- T1 → T2 → · · · → Ti → • ← Ti+1 ← · · · ← Tn−1 ← Tn, with 1 ≤ i ≤ n − 1.

- T1 ← T2 ← · · · ← Ti ← • → Ti+1 → · · · → Tn−1 → Tn, with 1 ≤ i ≤ n − 1.

- T1 ← T2 ← · · · ← Ti ← • → Ti → · · · → Tn−1 → Tn, with 1 ≤ i ≤ n.

- T1 ← T2 ← · · · ← Ti ← • → • ← Ti+1 ← · · · ← Tn−1 ← Tn, with
1 ≤ i ≤ n − 1.

- T1 ← · · · ← Ti ← • → Ti+1 → · · · → Tj−1 → • ← Tj ← · · · ← Tn, with
1 ≤ i < j ≤ n.

- T1 ← · · · ← Ti ← • → Ti → · · · → Tj−1 → • ← Tj ← · · · ← Tn, with
1 ≤ i < j ≤ n.



Example

AT5T4
,ET3T4

, IT3T2
,AT2T1

� OT1T5

T1

�

T2

AT2T1oo
IT3T2
•oo // T3

ET3T4// • T4
oo T5

AT5T4oo

T1

�

IT1T3

•oo // T3
//

ET3T4

// • T4
oo T5

AT5T4oo

T1

�
OT1T4

•oo // • T4
oo T5

AT5T4oo

T1
OT1T5

•oo // • T5
oo



Example

AT5T4
,ET3T4

, IT3T2
,AT2T1

� OT1T5

T1 T2

�

AT2T1oo
IT3T2
•oo // T3

ET3T4// • T4
oo T5

AT5T4oo

T1 T2

�

AT2T1oo
OT2T4

• //oo // • T4
oo T5

AT5T4oo

T1

�

T2
AT2T1

oo •oo // • T5
oo

OT2T5

T1
OT1T5

•oo // • T5
oo



Valid n-term syllogisms

The valid n-term syllogisms are 3n2
− n:

syllogism quantity

ATn−1Tn
, . . . ,AT1T2

� AT1Tn
1

ATnTn−1
, . . . ,ETi Ti+1

, . . . ,AT1T2
� ET1Tn

n-1

ATnTn−1
, . . . ,ETi+1Ti

, . . . ,AT1T2
� ET1Tn

n-1

ATn−1Tn
, . . . , ITiTi+1

, . . . ,AT2T1
� IT1Tn

n-1

ATn−1Tn
, . . . , ITi+1Ti

, . . . ,AT2T1
� IT1Tn

n-1

ATn−1Tn
, . . . , ITiTi

, . . . ,AT2T1
� IT1Tn

n

ATnTn−1
, . . . ,OTiTi+1

, . . . ,AT2T1
� OT1Tn

n-1

ATnTn−1
, . . . ,ETj−1Tj

, . . . , ITiTi+1
, . . . ,AT2T1

� OT1Tn

(n−1)(n−2)
2

ATnTn−1
, . . . ,ETj−1Tj

, . . . , ITi+1Ti
, . . . ,AT2T1

� OT1Tn

(n−1)(n−2)
2

ATnTn−1
, . . . ,ETjTj−1

, . . . , ITiTi+1
, . . . ,AT2T1

� OT1Tn

(n−1)(n−2)
2

ATnTn−1
, . . . ,ETjTj−1

, . . . , ITi+1Ti
, . . . ,AT2T1

� OT1Tn

(n−1)(n−2)
2

ATnTn−1
, . . . ,ETj−1Tj

, . . . , ITiTi
, . . . ,AT2T1

� OT1Tn

n(n−1)
2

ATnTn−1
, . . . ,ETjTj−1

, . . . , ITiTi
, . . . ,AT2T1

� OT1Tn

n(n−1)
2



Particular cases: n = 1, 2

n = 1: two valid syllogisms, that is the laws of identity

AT1T1
� AT1T1

IT1T1
� IT1T1

n = 2: ten valid syllogisms,

- AT1T2
� AT1T2

, ET1T2
� ET1T2

, IT1T2
� IT1T2

, OT1T2
� OT1T2

,
plus the laws of subalternation AT1T2

, IT1T1
� IT1T2

,
ET1T2

, IT1T1
� OT1T2

.

- ET2T1
� ET1T2

, IT2T1
� IT1T2

which are the laws of simple

conversion, and IT2T2
,AT2T1

� IT1T2
, ET2T1

, IT1T1
,� OT1T2

which are the laws of conversion per accidens.



n-graphs

An n-graph is a diagram of sets and functions

G0 G1

s0oo

t0
oo G2 · · ·Gn−1

s1oo

t1
oo Gn

tn−1

oo
sn−1oo

such that sk ◦ sk+1 = sk ◦ tk+1 and tk ◦ sk+1 = tk ◦ tk+1.
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- A 0-graph is just a set.



n-graphs

An n-graph is a diagram of sets and functions

G0 G1

s0oo

t0
oo G2 · · ·Gn−1

s1oo

t1
oo Gn

tn−1

oo
sn−1oo

such that sk ◦ sk+1 = sk ◦ tk+1 and tk ◦ sk+1 = tk ◦ tk+1.

- A 0-graph is just a set.

- A 1-graph is an ordinary multilabelled oriented graph.



Categories

A category is a multilabelled oriented graph G0 G1
t0

oo
s0oo

equipped

with a composition operation on arcs, required to be associative
and with neutral element.
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A category is a multilabelled oriented graph G0 G1
t0

oo
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equipped

with a composition operation on arcs, required to be associative
and with neutral element.
Example:

A

(h·g)·f =h·(g ·f )

""

g ·f

88f //

h·f

>>
eA 99 B

h·g

88

eB

FF

g

��
h // C eCff



Categories

A category is a multilabelled oriented graph G0 G1
t0

oo
s0oo

equipped

with a composition operation on arcs, required to be associative
and with neutral element.
Example:

A

(h·g)·f =h·(g ·f )

""

g ·f

88f //

h·f

>>
eA 99 B

h·g

88

eB

FF

g

��
h // C eCff

Examples: sets and functions, each monoid, well formed formulas
and logical consequence. . .



The free category over a graph

Let G = (G0 G1)
t0

oo
s0oo

be a graph. A word in G is a sequence

(f1, f2, · · · , fk) where fi ∈ G1 and t0(fi ) = s0(fi+1):

s0(f1)
f1 // t0(f1) = s0(f2)

f2 // t0(f2) · · · s0(fk)
fk // t0(fk)

For k = 0, one gets the empty word ().



The free category over a graph

Let G = (G0 G1)
t0

oo
s0oo

be a graph. A word in G is a sequence

(f1, f2, · · · , fk) where fi ∈ G1 and t0(fi ) = s0(fi+1):

s0(f1)
f1 // t0(f1) = s0(f2)

f2 // t0(f2) · · · s0(fk)
fk // t0(fk)

For k = 0, one gets the empty word ().

The free category over G is the the graph G ∗ = (G0 G ∗1 )
t0

oo
s0oo

where G ∗1 is the set of words in G equipped with concatenation as
composition, with neutral element given by the empty word:

(f1, f2, · · · , fk)♯(g1, g2, · · · , gr ) = (f1, f2, · · · , fk , g1, g2, · · · , gr )

()♯(f1, f2, · · · , fk) = (f1, f2, · · · , fk) = (f1, f2, · · · , fk)♯()



2-polygraphs

A 2-polygraph is a diagram of sets and functions

G1� _

��
s0

qqqqqq

xxqqqqqq
t0

qqqqqq

xxqqqqqq

G2

s1
qqqqqq

xxqqqq
qq
t1

qqqqqq

xxqqq
qq

q

G0 G ∗1
s0

oo
t0oo

in which G ∗ = (G0 G ∗1 )
t0

oo
s0oo

is the free category over

G = (G0 G1)
t0

oo
s0oo

and where G0 G ∗1
s0

oo
t0oo

G2
s1

oo
t1oo

is a

2-graph.



Rewriting systems

A rewriting system is a 2-polygraph
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G0 G ∗1
s0

oo
t0oo

in which the set G0 consists of exactly one element.
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in which the set G0 consists of exactly one element.

- G2 identifies a subset of G ∗1 × G ∗1 , namely the set of rewriting
rules

(f1, f2, · · · , fk) � (g1, g2, · · · , gr )



Rewriting systems

A rewriting system is a 2-polygraph

G1� _

��
s0

qqqqqq

xxqqqqqq
t0

qqqqqq

xxqqqqqq

G2

s1
qqqqqq

xxqqqq
qq
t1

qqqqqq

xxqqq
qq

q

G0 G ∗1
s0

oo
t0oo

in which the set G0 consists of exactly one element.

- G2 identifies a subset of G ∗1 × G ∗1 , namely the set of rewriting
rules

(f1, f2, · · · , fk) � (g1, g2, · · · , gr )

Remark: the emphasis is on the directed nature of �.



The 2-polygraph of n-term syllogisms

For every positive natural number n:

- G0 = {T1, . . . , Tn}.

- G1 = {ATi Tj
, ETiTj

, ITiTj
,OTi Tj

| 1 ≤ i ≤ j ≤ n}

- G2:

(ATiTi
) � (ATi Ti

) (ITi Ti
) � (ITi Ti

) 1 ≤ i ≤ n

(ATiTj
) � (ATiTj

) (ITi Tj
) � (ITi Tj

) 1 ≤ i < j ≤ n

(ETi Tj
) � (ETi Tj

) (OTi Tj
) � (OTi Tj

) 1 ≤ i < j ≤ n

(ATiTj
)♯(ITi Ti

) � ITi Tj
(ETi Tj

)♯(ITiTi
) � OTi Tj

1 ≤ i < j ≤ n

(ETj Ti
)◦ � (ETi Tj

) (ITj Ti
)◦ � (ITi Tj

) 1 ≤ i < j ≤ n

(ITjTj
)♯(ATj Ti

)◦ � (ITi Tj
) (ETj Ti

)◦♯(ITiTi
) � (OTi Tj

) 1 ≤ i < j ≤ n

(ATjTk
)♯(ATiTj

) � (ATiTk
) (ETj Tk

)♯(ATi Tj
) � (ETi Tk

) 1 ≤ i < j < k ≤ n

(ATjTk
)♯(ITiTj

) � (ITi Tk
) (ETj Tk

)♯(ITi Tj
) � (OTi Tk

) 1 ≤ i < j < k ≤ n

(ETkTj
)◦♯(ATiTj

) � (ETiTk
) (ATkTj

)◦♯(ETi Tj
) � (ETi Tk

) 1 ≤ i < j < k ≤ n

(ETkTj
)◦♯(ITiTj

) � (OTi Tk
) (ATkTj

)◦♯(OTi Tj
) � (OTi Tk

) 1 ≤ i < j < k ≤ n

(ITjTk
)♯(ATjTi

)◦ � (ITi Tk
) (ATj Tk

)♯(ITjTi
)◦ � (ITiTk

) 1 ≤ i < j < k ≤ n

(OTj Tk
)♯(ATj Ti

)◦ � (OTi Tk
) (ETj Tk

)♯(ITj Ti
)◦ � (OTi Tk

) 1 ≤ i < j < k ≤ n

(ATkTj
)◦♯(ETjTi

)◦ � (ETiTk
) (ITkTj

)◦♯(ATjTi
)◦ � (ITiTk

) 1 ≤ i < j < k ≤ n

(ETkTj
)◦♯(ITjTi

)◦ � (OTi Tk
) 1 ≤ i < j < k ≤ n



Theorem

For every positive natural number n, the rewriting system for the
calculus of n-term syllogisms is complete.



Theorem

For every positive natural number n, the rewriting system for the
calculus of n-term syllogisms is complete.

Sketch of proof: It must be observed that the length of the words that
undergo rewriting strictly decreases. Then, the proof proceeds by cases
depending on n.

- n = 2: the test is on the two possible rewritings of the word
(EAj Ai

)◦♯(IAiAi
).

- n = 3: the test is on the possible rewritings of the words

(EAkAj
)◦♯(AAiAj

) (AAk Aj
)◦♯(EAjAi

)◦

(EAkAj
)◦♯(IAiAj

) (EAj Ak
)♯(IAjAi

)◦

(AAjAk
)♯(IAjAi

)◦ (EAj Ak
)◦♯(IAjAi

)◦

(IAkAj
)◦♯(AAjAi

)◦ (EAj Ai
)◦♯(IAi Ai

).
(AAjAk

)♯(AAiAj
)♯(IAi Ai

) (EAj Ak
)♯(AAiAj

)♯(IAi Ai
)

(AAkAj
)◦♯(EAiAj

)♯(IAiAi
) (EAk Aj

)◦♯(AAiAj
)♯(IAi Ai

)
(EAjAk

)♯(IAjAj
)♯(AAj Ai

)◦ (AAk Aj
)◦♯(EAjAi

)◦♯(IAi Ai
)

(EAkAj
)◦♯(IAjAj

)♯(AAj Ai
)◦ (AAj Ak

)♯(IAjAj
)♯(AAj Ai

)◦


