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Categorical Propositions

Asp: All S is P (universal affirmative)
Esp: No S is P (universal negative)

Isp: Some S is P (particular affirmative)

Osp: Some S is not P (particular negative)
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Syllogisms

A syllogism is a rule of inference P1, P> E C where Py, P> and C
are categorical propositions.
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Syllogisms

A syllogism is a rule of inference P1, P> E C where Py, P> and C
are categorical propositions.

More precisely, in a syllogism appear exactly three terms S, P
and M as follows:

- M must appear in both P; and P but is not allowed to appear
in C.

- S must appear in both P, and C, as the subject of the latter.

- P must appear in both P; and C, as the predicate of the latter.
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Syllogisms

A syllogism is a rule of inference P1, P> E C where Py, P> and C
are categorical propositions.

More precisely, in a syllogism appear exactly three terms S, P
and M as follows:

- M must appear in both P; and P but is not allowed to appear
in C.

- S must appear in both P, and C, as the subject of the latter.

- P must appear in both P; and C, as the predicate of the latter.
Example:

Opn, Ens F Isp
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Valid Syllogisms

Ayp,Asy F Asp
Evp,Asu F Esp
Aup, sy F lsp
Ewp, lsu F Osp

Epm,Asm F Esp
Apv, Esy F Esp

Epum, Isu F Osp
Apyv, Osy E Osp

lvp, Ams F Isp
Ayp,lus F Isp
Owmp,Ams F Osp
Ewnp, lus E Osp

Apn, Eys F Esp
lpm, Ams F Isp
EP/\/], Ivs E Osp

Anp,Asy F lsp
Ewp,Asy F Osp

AP/\/], Esy E Osp
Epm, Asy F Osp

Ayvp,Ays F Isp
Ewp, Aus F Osp

APM7 Evs E Osp
Epm, Aus F Osp
Apn, Ays F lsp
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The calculus
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Example

Ayp,Asy = Asp
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Example

Ayp,Asy = Asp
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Example

Ayp,Asy = Asp
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Example

Ayp,Asy = Asp
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Example

EPM, ISI\/I E OSP
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Example

EPM, ISI\/I E OSP
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Example

EPM, ISI\/I E OSP
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Example

EPM, ISI\/I E OSP
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Example

App, Osy E Ogp
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Example

App, Osy E Ogp
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Example

App, Osy E Ogp
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Example

App, Osy E Ogp
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Example

Ayp, Ays E lsp
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Example

Ayp, Ays E lsp
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Example

Ayp, Ays E lsp
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Example

Ayp, Ays E lsp
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Terminology and notation

A syllogistic inference is any instance of the previous computation
process.
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Terminology and notation

A syllogistic inference is any instance of the previous computation

process.

Syllogistic inferences will be henceforth represented by planar

diagrams like

Asy Avp

S—M—P

| m |

S A P

A | A
S MS M M M mP
Il m Il
S °
Isp
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Recovering the valid syllogisms

Theorem

A syllogism is valid if and only if there is a (necessarily unique)
syllogistic inference from its premisses to its conclusion.
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Recovering the valid syllogisms

Theorem
A syllogism is valid if and only if there is a (necessarily unique)
syllogistic inference from its premisses to its conclusion.

Sketch of proof: A syllogistic inference yields a diagram between Agp, Esp, Isp, Osp
in exactly the following cases:

S—-M-—P S—e—-S—-M—=P
S—e—M—P S«M—e—-M-—=P
S—M-—-e—P S—M—P—e—P
S— M—e— P S—e—>S5S—>M-—e—P
S—e—-M—P S—e—=S —se— M—P
S—e—M—-e—P S« M—e—-M-—->e—P
S—M«—e—e—P S—e—e— M—P
=} F = B E DAl



Some features of the calculus

- the calculus is algorithmic.
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Some features of the calculus
- the calculus is algorithmic.

- the calculus allows the representation of the premisses of a
syllogism in any order.

Example: Eyp,lsy F Ogp
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Some features of the calculus
- the calculus is algorithmic.

- the calculus allows the representation of the premisses of a
syllogism in any order.

Example: Eyp,lsy F Ogp

)

N\,

- the calculus easily extends to n-term syllogisms.
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Non-valid syllogisms

Syllogistic inferences do not delete or create the bullet symbols.
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Non-valid syllogisms

Syllogistic inferences do not delete or create the bullet symbols.

Example: The syllogism Opp, Eps F Egp is

not valid.
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Non-valid syllogisms

Syllogistic inferences do not delete or create the bullet symbols.

Example: The syllogism Opp, Eps E Esp is not valid.
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Non-valid syllogisms

Syllogistic inferences do not delete or create the bullet symbols.

Example: The syllogism Opp, Eps F Esp is not valid

Example: The syllogism Epp, Espy F Agp is not valid.

DA



Non-valid syllogisms

Syllogistic inferences do not delete or create the bullet symbols.

Example: The syllogism Opp, Eps F Esp is not valid
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The rules of syllogism

- From two negative premisses nothing can be inferred.

- From two particular premisses nothing can be inferred.

- From a particular first premise and a negative second premise
nothing can be inferred.

- If one premise is particular, then the conclusion is such.

- The conclusion of a syllogism is negative if and only if so
one of its premisses.

is
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Rules of syllogism

From two negative premisses nothing can be inferred.
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Rules of syllogism

From two negative premisses nothing can be inferred.
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Rules of syllogism

From two negative premisses nothing can be inferred.
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Rules of syllogism

From two negative premisses nothing can be inferred.

E E
S—>£M<—/\/] /\/]—>AOAP<—P
5—>E£M<—/\/] M ° Owe °

S o O, M M—S—p
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Rules of syllogism

From two negative premisses nothing can be inferred.

s— M M— < p
s By, y . O,

s o %My M M———p
S o M
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The Square of Opposition

contrariety

N v
subalternation
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The laws of the Square of Opposition

Asp,lss F Isp

Subalternation
Esp,lss F Osp

Asp,Osp = Oss

Contradiction
Esp,lsp F Oss
Epp,Asp F Esp Contrariety

Epp,lsp E Osp Subcontrariety
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The laws of the Square of Opposition

Contradiction:

Subcontrary:
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Extending the calculus: n-term syllogisms

An n-term syllogism is a rule of inference

Pi,....Po_1EC
in which Py,

, Pn—1, C are categorical propositions any two
contiguous of which have exactly one term in common.

Notation: the appearing terms will be henceforth denoted by
T1, T, ..., Th.
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Recovering the valid n-term syllogisms

Theorem

For every positive natural number n, an n-term syllogism is valid if

and only if there is a (not necessarily unique) pasting of syllogistic
inferences from its premisses to its conclusion.
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Recovering the valid n-term syllogisms

Theorem

For every positive natural number n, an n-term syllogism is valid if
and only if there is a (not necessarily unique) pasting of syllogistic
inferences from its premisses to its conclusion.

Sketch of proof: For every positive natural number n, a syllogistic inference yields a
diagram between Asp, Esp, lsp, Osp in exactly the following cases:

-h—->Ta— =T —>Tu—-— Tho1— Th

-Thi—-To— > Ti—e—Tyg«— - —Thp1+ Tpwith1<i<n-1
- TieTo— —Ti—e—Ty—-—Tp1— Tphwithl<i<n—1
- Th—Th+— - —Ti—0—Ti— - —=Th1— Thwithl1<i<n.

- TheTae— —Ti—e0—e«— T+ - To_1— Ty, with
1<i<n-1

T e Tice—Tyg— = Tig— e T — Ty, with
1<i<j<n

c e TieeoTi— =Ty —ee T T, with
1<i<j<n.

n}
L)

1

u
!
S
o
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Example

AT5T4> ET3T4> IT3T2>AT2T1 F 0T1T5

A T | T3T) E T3Ty A -
1 2 ) T3 3 4 .
ArT,
T1 ° T3 . 1 5
| E
T3 .-
i ‘ ‘
Ar,T,
T1 . . | T5
Or 7,

T

T1 . | T5
orr,
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Example

ATSTM ET3T4> |T3T2>AT2T1 = 0T1T5

Ar, 1y 137, Er;7, Aryr,
T1 2 . T3 3 4 .
| h A TgTy
1 2 L (0] ° T !

TrTy
‘ ‘ -
Ty T . . T
A a o Ty Ts 5
T
Ty . O . Ts
T Ts
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Valid n-term syllogisms

The valid n-term syllogisms are 3n° — n:

syllogism quantity
ATn,lTna“'aATsz ’:ATlTn 1
ATnTn—17"'7ETiTi+17"'7AT1T2 = ETlTn n-1
ATnTnfp"'7ET,'+1T,'7"'7AT1T2 = ETlTn n-1
ATn—lTlﬂ"'7ITiTi+17"'7AT2T1 ’:ITlTn n-1
ATn—lTn7"'7ITi+1Ti7"'7AT2T1 }:ITlTn n-1
ATn—lTn7"'7ITiTi7"'7AT2T1 = ITlT,, n
ATnTn—17"'70TiTi+17"'7AT2T1 }:OTlTn n-1

(n—1)(n—2
ATnTn_l, ey E7'j717'j, R |T,.T,.+1, R 7AT2T1 F OTlTn R

—
=
>
|

N

—
=
3
|

N

(n—1
ATnTn—17 ceey ETjTj—N‘ Cy ITiTi+17‘ .. ,ATle = OTlTn —"
n—2

N

)

A E | Ar7 EO (n=1)(n=2)
TaTo—1s: - BT 1T s Wi q Ty - - -y TR Ty T1Th 2

)

)

,\
3
|
—
=]

ATnTn717"'7E—rj—rj—l7"'7ITi+1Ti7"' ,ATle ': OTlTn

>
=
3
|
|
=

ATnTn_la"'7ETJ;1TJ'7---7IT;T;7--- 7AT27'1 E OT1Tn

>
=
>
|
|
—

ATnTn_l,...,E7'J.7'J.71,...,|T,.T,.,... 7AT27'1 = OT1Tn

[m] [ =
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Particular cases: n=1,2

n = 1: two valid syllogisms, that is the laws of identity
Arn FAnLT

I7—1T1 F I7—1T1

n = 2: ten valid syllogisms,

- AT1T2 ’: AT1T21 ET1T2 ’: ET1T21 IT1T2 ': IT1T2v 0T1T2 ': 0T1T2v
plus the laws of subalternation Ar,1,,I1,1, F 17,7,
Ernrn,lnn FOnT.

- Er,7, FEy1,, I1,7, F Iy 7, which are the laws of simple

Conversion, and |T2T2>AT2T1 E |T1T21 ET2T17 |T1T1,': 07’17'2
which are the laws of conversion per accidens.
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n-graphs

An n-graph is a diagram of sets and functions

S0 S1 Sn—1
- - -~
GGG Gp1 TG,
to t1 th—1
such that s o Sk4+1 = Sk © tky1 and tg o Sk+1 = ti O tyq1
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n-graphs

An n-graph is a diagram of sets and functions

S0 S1 Sn—1
- - -~
GGG Gp1 TG,
to t1 th—1
such that s o Sk4+1 = Sk © tky1 and tg o Sk+1 = ti O tyq1

- A O-graph is just a set.
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n-graphs

An n-graph is a diagram of sets and functions

S0 S1 Sn—1
- - -~
GGG Gp1 TG,
to t1 th—1
such that s o Sk4+1 = Sk © tky1 and tg o Sk+1 = ti O tyq1

- A O-graph is just a set.

- A 1l-graph is an ordinary multilabelled oriented graph.
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Categories

S0
A category is a multilabelled oriented graph Gy = G1 equipped
to
with a composition operation on arcs, required to be associative
and with neutral element.
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Categories

S0

A category is a multilabelled oriented graph Gy = G1 equipped

to
with a composition operation on arcs, required to be associative
and with neutral element.

Example:

(h-g)-f=h-(gf)
m
“Caa D

h-f-
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Categories

S0

A category is a multilabelled oriented graph Gy = G1 equipped

to
with a composition operation on arcs, required to be associative
and with neutral element.

Example:

(h-g)f=h(gf)

S e

h-f-

Examples: sets and functions, each monoid, well formed formulas
and logical consequence. ..
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The free category over a graph

Let G =(Gp—__ G1) be a graph. A word in G is a sequence
to
(fi, o, , fx) where f; € Gy and to(f;) = so(fi+1)

(1)~ to() = so(e) —— to( )

f
(i) —— to(fi)
For k = 0, one gets the empty word ()
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The free category over a graph

Let G =(GoZ___ Gi) beagraph. A word in G is a sequence
to

(fl, fz, cee ,fk) where f, S Gl and to(f,') = So(f;+1):

so(f) —= to(f1) = so(fs) —2= to(F2) - - - so(fi) —— to(fe)

For k = 0, one gets the empty word ().

The free category over G is the the graph G* = (Gp —__ Gy)

to
where G is the set of words in G equipped with concatenation as
composition, with neutral element given by the empty word:

(f17f27”' Jfk)ﬁ(g17g27'” 7gr) — (f17f27"' 7fk7g17g27”' Jgr)

Ot(A, f, -+ i) = (R, Py i) = (As oy o+ ROE()

n}

L)
1
u

!
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2-polygraphs

A 2-polygraph is a diagram of sets and functions

G Gy
/tgo% F/%%
Go ﬁ% Gy /
S0
in which G* = (Go 2 Gy') is the free category over
to
s
G p—

(Go G1) and where GoZ—_ G2 G, isa
to
2-graph.

t1

S0
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Rewriting systems

A rewriting system is a 2-polygraph

Gy
/t%%
Go ﬁ%ﬁ Gy

S0

"
»f/

in which the set Gy consists of exactly one element.

DA



Rewriting systems

A rewriting system is a 2-polygraph

Gy
/t%%
Go ﬁ%ﬁ Gy

S0

"
»f/

in which the set Gy consists of exactly one element.

- G identifies a subset of G x G, namely the set of rewriting
rules

(flyf27"' 7fk) E (g17g27' : 7gr)
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Rewriting systems

A rewriting system is a 2-polygraph

Gy
/t%%
Go ﬁ%ﬁ Gy

S0

"
»f/

in which the set Gy consists of exactly one element.

- G identifies a subset of G x G, namely the set of rewriting
rules

(f,f,-  f) F (81,8,

) gr)
Remark: the emphasis is on the directed nature of F.
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The 2-polygraph of n-term syllogisms

For every positive natural number n:
- Go={Ty,..., T}
- G ={A77,Er7, 57,0771 <i<j<n}

- Gg:
(Ar,7) F (ArT) (Irr) E(In7)
(AT,T,)’:(ATT) (Irm) F (1)
(Er.7;) F (Eriy) (Or,;7;) F(O7;7y)
(AT,T,)tiUTT) FlrnT (Er,7)i(l77) F Or;7y
(Er,7,)° F (ETT) (Ip7)° F ()
(I7rm)i(ArT)° F (1) (Er,7;)°8(I77) F (O77y)
(ArT)i(ATT) F (ArT)  (Enn)i(ArnT) F (EnT)
(ATTk)ﬁ( ) F (1) (Er,7)8(077) F (O77,)
(E7T, )°ﬁ(ATT) (Erm)  (An1)°t(ErT) F (Enm)
(Er,7, )°ti(|TT) (Or1)  (ArT)°8(077) F (O,
( TTk)ﬁ(ATT) F () (Arr)877)° F (I,
(O7,7)i(A77,)° F (O77)  (Erm)i(ln7)° F (O77,)
(Ar,7)°8(E7T,)° F (Er7) (1)t (Arnr)° F (Inr,)
(ETk )Oﬁ(ITT) (oTiTk)

=
IN

= e e

ININININIA

e T = T O = S ey
INININININININ TN



Theorem

For every positive natural number n, the rewriting system for the
calculus of n-term syllogisms is complete.
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Theorem

For every positive natural number n, the rewriting system for the
calculus of n-term syllogisms is complete.

Sketch of proof: It must be observed that the length of the words that
undergo rewriting strictly decreases. Then, the proof proceeds by cases
depending on n.

- n = 2: the test is on the two possible rewritings of the word
(EAin)Ou(IAiAi)'

- n = 3: the test is on the possible rewritings of the words

(Eaa;) 8(Ana;) (Aaa;)H(Eaa)°
(Eaea;) E(1as8) (Eaja )t ('AA)
(AA,-Ak)WA,-A,-)O (EAjAk) (IAA)
(1aa;) 8(Aaa,)° (Ean)° ('AA)

(Ay Ak)ti(AAA )E(lasa,) (Eaja )8(AA4)E(1a4)
(Aaa) B(Eaa)t(laa)  (Eaa ) 8(Aaa)E(144,)
(Eaja)8(1a;a)8(AA4)°  (Aaa)® (EAA )8 (1aia:)
(Eaea)° ('A at(Aaa)°  (Aga)i(laa)t(Aan)°
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