A diagrammatic calculus of syllogisms

Ruggero Pagnan

DISI, University of Genova ruggero.pagnan@disi.unige.it

\mathbf{A}_{SP} : All S is P (universal affirmative)

E_{SP} : No S is P (universal negative)

 I_{SP} : Some S is P (particular affirmative)

 \mathbf{O}_{SP} : Some S is not P (particular negative)

K ロ X (日) X 모 X X B X D 및 X YO Q Q

Syllogisms

A syllogism is a rule of inference $P_1, P_2 \models C$ where P_1, P_2 and C are categorical propositions.

Syllogisms

A syllogism is a rule of inference $P_1, P_2 \models C$ where P_1, P_2 and C are categorical propositions.

More precisely, in a syllogism appear exactly three terms S, P and M as follows:

- M must appear in both P_1 and P_2 but is not allowed to appear in C.
- S must appear in both P_2 and C, as the subject of the latter.
- P must appear in both P_1 and C, as the predicate of the latter.

KORKAR KERKER E VAN

Syllogisms

A syllogism is a rule of inference $P_1, P_2 \models C$ where P_1, P_2 and C are categorical propositions.

More precisely, in a syllogism appear exactly three terms S, P and M as follows:

- M must appear in both P_1 and P_2 but is not allowed to appear in C.
- S must appear in both P_2 and C, as the subject of the latter.
- P must appear in both P_1 and C, as the predicate of the latter.

Example:

$$
\mathbf{O}_{PM}, \mathbf{E}_{MS} \vDash \mathbf{I}_{SP}
$$

KORKAR KERKER E VAN

Valid Syllogisms

Kロト (御) (高) (高) (高) - 著 - のQQ

The calculus

K 미 X (日) X 도 X X 도 X 도 보니 이익 (이)

 $A_{MP}, A_{SM} \models A_{SP}$

 $A_{MP}, A_{SM} \models A_{SP}$

$$
S \xrightarrow{\mathbf{A}_{SM}} M \qquad M \xrightarrow{\mathbf{A}_{MP}} P
$$

イロト 不優 トメ 言 トメ 言 トー

 \equiv 990

 $A_{MP}, A_{SM} \models A_{SP}$

$$
S \xrightarrow{\mathbf{A}_{SM}} M \qquad M \xrightarrow{\mathbf{A}_{MP}} P
$$

$$
S \xrightarrow{\mathbf{A}_{SM}} M \xrightarrow{\mathbf{A}_{MP}} P
$$

イロメ イ部メ イミメ イモメー

重。

 290

 $A_{MP}, A_{SM} \models A_{SP}$

$$
S \xrightarrow{\mathbf{A}_{SM}} M \qquad M \xrightarrow{\mathbf{A}_{MP}} P
$$

$$
S \xrightarrow{\mathbf{A}_{SM}} M \xrightarrow{\mathbf{A}_{MP}} P
$$

$$
S \xrightarrow{\mathbf{A}_{SP}} P
$$

イロン イ部ン イミン イミン

 $2Q$

ŧ

 E_{PM} , I_{SM} \models O_{SP}

 E_{PM} , I_{SM} \in O_{SP}

$$
S \xleftarrow{\mathbf{I}_{\mathcal{S}M}} M \qquad M \xrightarrow{\mathbf{E}_{PM}} P
$$

イロト イ団ト イミト イミト

暑い 299

 E_{PM} , I_{SM} \models O_{SP}

$$
S \xleftarrow{\mathbf{I}_{\mathcal{S}M}} M \qquad M \xrightarrow{\mathbf{E}_{PM}} P
$$

イロト イ団ト イミト イミト

ョ $2Q$

 E_{PM} , I_{SM} \models O_{SP}

K ロ > K 레 > K 회 > K 회 > 1 회 > 1 X 9 Q Q

 A_{PM} , O_{SM} \models O_{SP}

 A_{PM} , O_{SM} \models O_{SP}

イロン イ部ン イモン イモン

 \equiv 299

 A_{PM} , 0_{SM} \models 0_{SP}

K ロ > K 레 > K 회 > K 회 > 1 회 > 1 X 9 Q Q

 A_{PM} , O_{SM} \models O_{SP}

K ロ > K 레 > K 회 > K 회 > 1 회 > 1 X 9 Q Q

 $\mathbf{A}_{MP}, \mathbf{A}_{MS} \models \mathbf{I}_{SP}$

 $\mathbf{A}_{MP}, \mathbf{A}_{MS} \models \mathbf{I}_{SP}$

$$
S \xleftarrow{\mathbf{A}_{MS}} M \qquad M \xrightarrow{\mathbf{A}_{MP}} P
$$

 \equiv 940

イロト イ団ト イミト イミト

 $\mathbf{A}_{MP}, \mathbf{A}_{MS} \models \mathbf{I}_{SP}$

$$
S \xrightarrow{\mathbf{A}_{MS}} M \qquad M \xrightarrow{\mathbf{A}_{MP}} P
$$

K ロ > K 레 > K 회 > K 회 > 1 회 > 1 X 9 Q Q

 $\mathbf{A}_{MP}, \mathbf{A}_{MS} \models \mathbf{I}_{SP}$

$$
S \xleftarrow{\mathbf{A}_{MS}} M \qquad M \xrightarrow{\mathbf{A}_{MP}} P
$$

K ロ > K 레 > K 회 > K 회 > 1 회 > 1 X 9 Q Q

Terminology and notation

A syllogistic inference is any instance of the previous computation process.

Terminology and notation

A syllogistic inference is any instance of the previous computation process.

Syllogistic inferences will be henceforth represented by planar diagrams like

イロト イ押ト イミト イヨト

 299

 \Rightarrow

Recovering the valid syllogisms

Theorem

A syllogism is valid if and only if there is a (necessarily unique) syllogistic inference from its premisses to its conclusion.

K ロ > K 레 > K 회 > K 회 > 1 회 > 1 X 9 Q Q

Recovering the valid syllogisms

Theorem

A syllogism is valid if and only if there is a (necessarily unique) syllogistic inference from its premisses to its conclusion.

Sketch of proof: A syllogistic inference yields a diagram between A_{SP} , E_{SP} , I_{SP} , O_{SP} in exactly the following cases:

KORK ERREST ORA

Some features of the calculus

- the calculus is algorithmic.

Some features of the calculus

- the calculus is algorithmic.
- the calculus allows the representation of the premisses of a syllogism in any order.

Example: E_{MP} , I_{SM} \models O_{SP}

イロト イラト イミト イミト

 Ω

Some features of the calculus

- the calculus is algorithmic.
- the calculus allows the representation of the premisses of a syllogism in any order.

Example: E_{MP} , $I_{SM} \models Q_{SP}$

イロト イ押 トイラト イラト

 Ω

- the calculus easily extends to n -term syllogisms.

Syllogistic inferences do not delete or create the bullet symbols.

Syllogistic inferences do not delete or create the bullet symbols.

K ロ X (日) X 동 X (王) X [王) 2 [王] 2010년

Example: The syllogism \mathbf{O}_{MP} , \mathbf{E}_{MS} \models **E**_{SP} is not valid.

Syllogistic inferences do not delete or create the bullet symbols.

Example: The syllogism \mathbf{O}_{MP} , \mathbf{E}_{MS} \models **E**_{SP} is not valid.

K ロト K 御 ト K 差 K

 $2Q$

Syllogistic inferences do not delete or create the bullet symbols.

Example: The syllogism \mathbf{O}_{MP} , \mathbf{E}_{MS} \models **E**_{SP} is not valid.

イロト イ押ト イヨト イヨト

 299 医心

Example: The syllogism E_{MP} , $E_{SM} \models A_{SP}$ is not valid.

Syllogistic inferences do not delete or create the bullet symbols.

Example: The syllogism \mathbf{O}_{MP} , \mathbf{E}_{MS} \models **E**_{SP} is not valid.

Example: The syllogism E_{MP} , $E_{SM} \models A_{SP}$ is not valid.

 299

ТĐ Б

The rules of syllogism

- From two negative premisses nothing can be inferred.
- From two particular premisses nothing can be inferred.
- From a particular first premise and a negative second premise nothing can be inferred.
- If one premise is particular, then the conclusion is such.
- The conclusion of a syllogism is negative if and only if so is one of its premisses.

KORKAR KERKER E VAN

From two negative premisses nothing can be inferred.

From two negative premisses nothing can be inferred.

$$
S \longrightarrow^{E_{SM}} M \qquad M \longrightarrow^{E_{MP}} P
$$

K ロ > K 레 > K 프 > K 콘 > - 콘 - K 9 Q Q*

From two negative premisses nothing can be inferred.

K ロ X (日) X 모 X X B X D 및 X YO Q Q

From two negative premisses nothing can be inferred.

K ロ X (日) X 동 X X 동 X 동 X 9 Q Q*

From two negative premisses nothing can be inferred.

The Square of Opposition

 $2Q$ \leftarrow \Box)

The laws of the Square of Opposition

$$
\left\{\n \begin{aligned}\n &\mathbf{A}_{SP}, \mathbf{I}_{SS} \models \mathbf{I}_{SP} \\
&\mathbf{E}_{SP}, \mathbf{I}_{SS} \models \mathbf{O}_{SP}\n \end{aligned}\n \right\}\n \text{Subalternation}\n \left\{\n \begin{aligned}\n &\text{Subalternation} \\
&\mathbf{A}_{SP}, \mathbf{O}_{SP} \models \mathbf{O}_{SS}\n \end{aligned}\n \right\}\n \text{Contraction}\n \left\{\n \begin{aligned}\n &\text{Contradiction} \\
&\text{E}_{SP}, \mathbf{I}_{SP} \models \mathbf{O}_{SS}\n \end{aligned}\n \right\}
$$

 $E_{PP}, A_{SP} \models E_{SP}$ Contrariety

 E_{PP} , $I_{SP} \models Q_{SP}$ Subcontrariety

K ロ > K 레 > K 코 > K 코 > - 코 - Y Q Q O

The laws of the Square of Opposition

Contradiction:

Subcontrary:

 \leftarrow \Box \rightarrow

- 1 行 ト

 290

Extending the calculus: n -term syllogisms

An n-term syllogism is a rule of inference

$$
P_1,\ldots,P_{n-1}\vDash C
$$

in which P_1, \ldots, P_{n-1} , C are categorical propositions any two contiguous of which have exactly one term in common.

Notation: the appearing terms will be henceforth denoted by T_1, T_2, \ldots, T_n .

KORKAR KERKER E VAN

Recovering the valid n-term syllogisms

Theorem

For every positive natural number n , an n -term syllogism is valid if and only if there is a (not necessarily unique) pasting of syllogistic inferences from its premisses to its conclusion.

KORKAR KERKER DE KORO

Recovering the valid *n*-term syllogisms

Theorem

For every positive natural number n , an n -term syllogism is valid if and only if there is a (not necessarily unique) pasting of syllogistic inferences from its premisses to its conclusion.

Sketch of proof: For every positive natural number n, a syllogistic inference yields a diagram between A_{SP} , E_{SP} , I_{SP} , O_{SP} in exactly the following cases:

 $T_1 \rightarrow T_2 \rightarrow \cdots \rightarrow T_i \rightarrow T_{i+1} \rightarrow \cdots \rightarrow T_{n-1} \rightarrow T_n$. $T_1 \rightarrow T_2 \rightarrow \cdots \rightarrow T_i \rightarrow \bullet \leftarrow T_{i+1} \leftarrow \cdots \leftarrow T_{n-1} \leftarrow T_n$, with $1 \leq i \leq n-1$. $T_1 \leftarrow T_2 \leftarrow \cdots \leftarrow T_i \leftarrow \bullet \rightarrow T_{i+1} \rightarrow \cdots \rightarrow T_{n-1} \rightarrow T_n$, with $1 \leq i \leq n-1$. $T_1 \leftarrow T_2 \leftarrow \cdots \leftarrow T_i \leftarrow \bullet \rightarrow T_i \rightarrow \cdots \rightarrow T_{n-1} \rightarrow T_n$, with $1 \leq i \leq n$. $T_1 \leftarrow T_2 \leftarrow \cdots \leftarrow T_i \leftarrow \bullet \rightarrow \bullet \leftarrow T_{i+1} \leftarrow \cdots \leftarrow T_{n-1} \leftarrow T_n$, with $1 \le i \le n-1$. $- T_1 \leftarrow \cdots \leftarrow T_i \leftarrow \bullet \rightarrow T_{i+1} \rightarrow \cdots \rightarrow T_{i-1} \rightarrow \bullet \leftarrow T_i \leftarrow \cdots \leftarrow T_n$, with $1 \leq i \leq j \leq n$. $\overline{I}_1 \leftarrow \cdots \leftarrow \overline{I}_i \leftarrow \bullet \rightarrow \overline{I}_i \rightarrow \cdots \rightarrow \overline{I}_{i-1} \rightarrow \bullet \leftarrow \overline{I}_i \leftarrow \cdots \leftarrow \overline{I}_n$, with $1 \leq i \leq j \leq n$.

イロン イ何ン イヨン イヨン・ ヨー

 Ω

 $A_{T_5T_4}, E_{T_3T_4}, I_{T_3T_2}, A_{T_2T_1} \vDash 0_{T_1T_5}$

(ロ) (同) つへへ

 $A_{T_5T_4}, E_{T_3T_4}, I_{T_3T_2}, A_{T_2T_1} \vDash 0_{T_1T_5}$

4 ロ ト 4 型 ト つへへ

Valid n-term syllogisms

The valid *n*-term syllogisms are $3n^2 - n$:

syllogism	quantity
$A_{\mathcal{T}_{n-1}\mathcal{T}_n},\ldots,A_{\mathcal{T}_1\mathcal{T}_2}\vDash A_{\mathcal{T}_1\mathcal{T}_n}$	$\mathbf{1}$
$A_{\mathcal{T}_n\mathcal{T}_{n-1}},\ldots,E_{\mathcal{T}_i\mathcal{T}_{i+1}},\ldots,A_{\mathcal{T}_1\mathcal{T}_2}\vDash E_{\mathcal{T}_1\mathcal{T}_n}$	$n-1$
$A_{\mathcal{T}_n\mathcal{T}_{n-1}},\ldots,E_{\mathcal{T}_{i+1}\mathcal{T}_i},\ldots,A_{\mathcal{T}_1\mathcal{T}_2}\vDash E_{\mathcal{T}_1\mathcal{T}_n}$	n-1
${\bf A}_{\mathcal{T}_{n-1}\mathcal{T}_n},\ldots,{\bf I}_{\mathcal{T}_i\mathcal{T}_{i+1}},\ldots,{\bf A}_{\mathcal{T}_2\mathcal{T}_1}\vDash {\bf I}_{\mathcal{T}_1\mathcal{T}_n}$	n-1
$\mathbf{A}_{\mathcal{T}_{n-1}\mathcal{T}_n},\ldots,\mathbf{I}_{\mathcal{T}_{i+1}\mathcal{T}_i},\ldots,\mathbf{A}_{\mathcal{T}_2\mathcal{T}_1}\vDash\mathbf{I}_{\mathcal{T}_1\mathcal{T}_n}$	n-1
$\mathbf{A}_{\mathcal{T}_{n-1}\mathcal{T}_n},\ldots,\mathbf{I}_{\mathcal{T}_i\mathcal{T}_i},\ldots,\mathbf{A}_{\mathcal{T}_2\mathcal{T}_1}\vDash \mathbf{I}_{\mathcal{T}_1\mathcal{T}_n}$	n
$\mathbf{A}_{\mathcal{T}_n \mathcal{T}_{n-1}}, \ldots, \mathbf{O}_{\mathcal{T}_i \mathcal{T}_{i+1}}, \ldots, \mathbf{A}_{\mathcal{T}_2 \mathcal{T}_1} \models \mathbf{O}_{\mathcal{T}_1 \mathcal{T}_n}$	n-1
$\mathbf{A}_{T_n T_{n-1}}, \ldots, \mathbf{E}_{T_{j-1} T_j}, \ldots, \mathbf{I}_{T_i T_{i+1}}, \ldots, \mathbf{A}_{T_2 T_1} \models \mathbf{O}_{T_1 T_n}$	$(n-1)(n-2)$
$\mathbf{A}_{T_n T_{n-1}}, \ldots, \mathbf{E}_{T_{j-1} T_j}, \ldots, \mathbf{I}_{T_{i+1} T_i}, \ldots, \mathbf{A}_{T_2 T_1} \models \mathbf{O}_{T_1 T_n}$	$(n-1)(n-2)$
${\bf A}_{T_n T_{n-1}}, \ldots, {\bf E}_{T_j T_{j-1}}, \ldots, {\bf I}_{T_i T_{i+1}}, \ldots, {\bf A}_{T_2 T_1} \vDash {\bf O}_{T_1 T_n}$	$(n-1)(n-2)$
$\mathbf{A}_{T_n T_{n-1}}, \ldots, \mathbf{E}_{T_j T_{j-1}}, \ldots, \mathbf{I}_{T_{i+1} T_j}, \ldots, \mathbf{A}_{T_2 T_1} \models \mathbf{O}_{T_1 T_n}$	$\frac{(n-1)(n-2)}{n}$
$\mathbf{A}_{\mathcal{T}_n\mathcal{T}_{n-1}},\ldots,\mathbf{E}_{\mathcal{T}_{j-1}\mathcal{T}_j},\ldots,\mathbf{I}_{\mathcal{T}_i\mathcal{T}_i},\ldots,\mathbf{A}_{\mathcal{T}_2\mathcal{T}_1}\vDash\mathbf{O}_{\mathcal{T}_1\mathcal{T}_n}$	$n(n-1)$
${\bf A}_{T_n T_{n-1}}, \ldots, {\bf E}_{T_j T_{j-1}}, \ldots, {\bf I}_{T_i T_i}, \ldots, {\bf A}_{T_2 T_1} \models {\bf O}_{T_1 T_n}$	$n(n-1)$

K ロ X (日) X 도 X X 도 X 도 로 X - 9 Q Q Q

Particular cases: $n = 1, 2$

 $n = 1$: two valid syllogisms, that is the *laws of identity*

$$
\mathbf{A}_{\mathcal{T}_1\mathcal{T}_1} \models \mathbf{A}_{\mathcal{T}_1\mathcal{T}_1} \quad \mathbf{I}_{\mathcal{T}_1\mathcal{T}_1} \models \mathbf{I}_{\mathcal{T}_1\mathcal{T}_1}
$$

 $n = 2$: ten valid syllogisms,

- $A_{T_1T_2} \vDash A_{T_1T_2}$, $E_{T_1T_2} \vDash E_{T_1T_2}$, $I_{T_1T_2} \vDash I_{T_1T_2}$, $O_{T_1T_2} \vDash O_{T_1T_2}$, plus the *laws of subalternation* $A_{T_1T_2}$, $I_{T_1T_1}$ \models $I_{T_1T_2}$, $E_{T_1T_2}$, $I_{T_1T_1} \models Q_{T_1T_2}$.

KORKAR KERKER DE KORO

- $\mathsf{E}_{\mathcal{T}_2\mathcal{T}_1} \vDash \mathsf{E}_{\mathcal{T}_1\mathcal{T}_2}$, $\mathsf{I}_{\mathcal{T}_2\mathcal{T}_1} \vDash \mathsf{I}_{\mathcal{T}_1\mathcal{T}_2}$ which are the *laws of simple* conversion, and $I_{7_2T_2}$, $A_{T_2T_1}$ \models $I_{T_1T_2}$, $E_{T_2T_1}$, $I_{T_1T_1}$, \models $O_{T_1T_2}$ which are the *laws of conversion per accidens*.

n-graphs

An *n-graph* is a diagram of sets and functions

$$
G_0 \xleftarrow{s_0} G_1 \xleftarrow{s_1} G_2 \cdots G_{n-1} \xleftarrow{s_{n-1}} G_n
$$

K ロ > K @ > K 할 > K 할 > 1 할 > 9 Q @

such that $s_k \circ s_{k+1} = s_k \circ t_{k+1}$ and $t_k \circ s_{k+1} = t_k \circ t_{k+1}$.

n-graphs

An *n-graph* is a diagram of sets and functions

$$
G_0 \xleftarrow{s_0} G_1 \xleftarrow{s_1} G_2 \cdots G_{n-1} \xleftarrow{s_{n-1}} G_n
$$

K ロ X (日) X 모 X X B X D 및 X YO Q Q

such that $s_k \circ s_{k+1} = s_k \circ t_{k+1}$ and $t_k \circ s_{k+1} = t_k \circ t_{k+1}$.

- A 0-graph is just a set.

n-graphs

An *n-graph* is a diagram of sets and functions

$$
G_0 \xleftarrow{s_0} G_1 \xleftarrow{s_1} G_2 \cdots G_{n-1} \xleftarrow{s_{n-1}} G_n
$$

such that $s_k \circ s_{k+1} = s_k \circ t_{k+1}$ and $t_k \circ s_{k+1} = t_k \circ t_{k+1}$.

- A 0-graph is just a set.

- A 1-graph is an ordinary multilabelled oriented graph.

K ロ X (日) X 동 X X 동 X 동 X 9 Q Q*

Categories

A *category* is a multilabelled oriented graph $\displaystyle{G_0\sum_{t_0}^{s_0}G_1}$ equipped with a composition operation on arcs, required to be associative and with neutral element.

K ロ > K 레 > K 회 > K 회 > 1 회 > 1 X 9 Q Q

Categories

A *category* is a multilabelled oriented graph $\displaystyle{G_0\sum_{t_0}^{s_0}G_1}$ equipped with a composition operation on arcs, required to be associative and with neutral element.

Example:

 \leftarrow \Box

 Ω

Categories

A *category* is a multilabelled oriented graph $\displaystyle{G_0\sum_{t_0}^{s_0}G_1}$ equipped with a composition operation on arcs, required to be associative and with neutral element.

Example:

Examples: sets and functions, each monoid, well formed formulas and logical consequence. . .

 200

The free category over a graph

Let
$$
G = (G_0 \sum_{t_0}^{s_0} G_1)
$$
 be a graph. A word in G is a sequence
\n (f_1, f_2, \dots, f_k) where $f_i \in G_1$ and $t_0(f_i) = s_0(f_{i+1})$:

$$
s_0(f_1) \xrightarrow{f_1} t_0(f_1) = s_0(f_2) \xrightarrow{f_2} t_0(f_2) \cdots s_0(f_k) \xrightarrow{f_k} t_0(f_k)
$$

イロン イ部ン イモン イモン

■ つびび

For $k = 0$, one gets the empty word ().

The free category over a graph

Let
$$
G = (G_0 \sum_{t_0}^{s_0} G_1)
$$
 be a graph. A word in G is a sequence (f_1, f_2, \cdots, f_k) where $f_i \in G_1$ and $t_0(f_i) = s_0(f_{i+1})$:

$$
s_0(f_1) \xrightarrow{f_1} t_0(f_1) = s_0(f_2) \xrightarrow{f_2} t_0(f_2) \cdots s_0(f_k) \xrightarrow{f_k} t_0(f_k)
$$

For $k = 0$, one gets the empty word ().

The *free category* over G is the the graph $G^* = (G_0 \xleftarrow{e^*} G_1^*)$ $rac{\overline{s_0}}{t_0}$

where G_1^* is the set of words in G equipped with concatenation as composition, with neutral element given by the empty word:

$$
(f_1, f_2, \cdots, f_k) \sharp (g_1, g_2, \cdots, g_r) = (f_1, f_2, \cdots, f_k, g_1, g_2, \cdots, g_r)
$$

 $(\iota \sharp (f_1, f_2, \cdots, f_k) = (f_1, f_2, \cdots, f_k) = (f_1, f_2, \cdots, f_k) \sharp (t)$

イロト イ押ト イミト イミト

2-polygraphs

A 2-polygraph is a diagram of sets and functions

in which $G^* = (G_0 \stackrel{\longleftrightarrow}{\longleftarrow} G_1^*)$ $\frac{\frac{1}{\sqrt[3]{50}}}{\frac{1}{t_0}}$ G_1^*) is the free category over $G = (G_0 \xleftarrow{S_0} G_1)$ and where $G_0 \xleftarrow{\overline{t_0}} G_1^* \xleftarrow{t_1} G_2$ is a 2-graph.

 200

Rewriting systems

A rewriting system is a 2-polygraph

4 D F

つへへ

in which the set G_0 consists of exactly one element.

Rewriting systems

A rewriting system is a 2-polygraph

in which the set G_0 consists of exactly one element.

 G_2 identifies a subset of $G_1^*\times G_1^*$, namely the set of rewriting rules

$$
(f_1,f_2,\cdots,f_k)\vDash (g_1,g_2,\cdots,g_r)
$$

4日)

 Ω

Rewriting systems

A rewriting system is a 2-polygraph

in which the set G_0 consists of exactly one element.

 G_2 identifies a subset of $G_1^*\times G_1^*$, namely the set of rewriting rules

$$
(f_1, f_2, \cdots, f_k) \vDash (g_1, g_2, \cdots, g_r)
$$

(ロ) (同)

 200

Remark: the emphasis is on the directed nature of \models .

The 2-polygraph of n -term syllogisms

For every positive natural number n :

-
$$
G_0 = \{T_1, ..., T_n\}
$$
.
\n- $G_1 = \{A_{T_i T_j}, E_{T_i T_j}, I_{T_i T_j}, O_{T_i T_j} | 1 \le i \le j \le n\}$
\n- G_2 :
\n $(A_{T_i T_j}) \models (A_{T_i T_j})$ $(I_{T_i T_j}) \models (I_{T_i T_j})$ $1 \le i \le n$
\n $(E_{T_i T_j}) \models (E_{T_i T_j})$ $(I_{T_i T_j}) \models (I_{T_i T_j})$ $1 \le i < j \le n$
\n $(E_{T_i T_j}) \notin (E_{T_i T_j})$ $(O_{T_i T_j}) \notin (O_{T_i T_j})$ $1 \le i < j \le n$
\n $(A_{T_i T_j}) \sharp (I_{T_i T_i}) \models I_{T_i T_j}$ $(E_{T_i T_j}) \sharp (I_{T_i T_i}) \models O_{T_i T_j}$ $1 \le i < j \le n$
\n $(E_{T_j T_i})^{\circ} \sharp (E_{T_i T_j})$ $(I_{T_j T_j})^{\circ} \sharp (I_{T_i T_i}) \models O_{T_i T_j}$ $1 \le i < j \le n$
\n $(I_{T_j T_j}) \sharp (A_{T_j T_i})^{\circ} \sharp (I_{T_i T_j})$ $(I_{T_j T_j})^{\circ} \sharp (I_{T_i T_j}) \sharp (O_{T_i T_j})$ $1 \le i < j \le n$
\n $(A_{T_j T_k}) \sharp (A_{T_i T_j}) \sharp (A_{T_i T_j})$ $(E_{T_j T_k}) \sharp (I_{T_i T_j}) \sharp (O_{T_i T_k})$ $1 \le i < j < k \le n$
\n $(A_{T_j T_k}) \sharp (I_{T_i T_j}) \sharp (I_{T_i T_j})$ $(E_{T_j T_k}) \sharp (I_{T_i T_j}) \sharp (O_{T_i T_k})$ $1 \le i < j < k \le n$
\n $(E_{T_k T_j})^{\circ} \sharp (I_{T_i T_j}) \sharp (I_{T_i T_k})$ $(E_{T_j T_k}) \sharp (I_{T_i T_j}) \$

Theorem

For every positive natural number n , the rewriting system for the calculus of n-term syllogisms is complete.

Theorem

For every positive natural number n , the rewriting system for the calculus of n-term syllogisms is complete.

Sketch of proof: It must be observed that the length of the words that undergo rewriting strictly decreases. Then, the proof proceeds by cases depending on n.

- $n = 2$: the test is on the two possible rewritings of the word $(\mathsf{E}_{A_jA_i})^\circ \sharp (\mathsf{I}_{A_iA_i}).$
- $n = 3$: the test is on the possible rewritings of the words

$$
(E_{A_k A_j})^{\circ} \sharp (A_{A_i A_j})
$$
\n
$$
(E_{A_k A_j})^{\circ} \sharp (I_{A_i A_j})
$$
\n
$$
(A_{A_j A_k}) \sharp (I_{A_j A_i})^{\circ}
$$
\n
$$
(A_{A_j A_k}) \sharp (I_{A_j A_i})^{\circ}
$$
\n
$$
(I_{A_k A_j})^{\circ} \sharp (A_{A_j A_i})^{\circ}
$$
\n
$$
(I_{A_k A_j})^{\circ} \sharp (A_{A_j A_i})^{\circ}
$$
\n
$$
(I_{A_k A_j})^{\circ} \sharp (A_{A_j A_i})^{\circ}
$$
\n
$$
(I_{A_j A_k}) \sharp (I_{A_j A_j})^{\circ}
$$
\n
$$
(I_{A_j A_k}) \sharp (I_{A_j A_j}) \sharp (I_{A_i A_j})
$$
\n
$$
(I_{A_j A_k})^{\circ} \sharp (I_{A_j A_j})^{\circ}
$$
\n
$$
(I_{A_j A_k}) \sharp (I_{A_j A_j})^{\circ}
$$
\n
$$
(I_{A_j A_k})^{\circ} \sharp (I_{A_j A_j})^{\circ}
$$
\n
$$
(I_{A_k A_j})^{\circ} \sharp (I_{A_j A_i})^{\circ}
$$
\n
$$
(I_{A_k A_j})^{\circ} \sharp (I_{A_j A_i})^{\circ}
$$
\n
$$
(I_{A_k A_j})^{\circ} \sharp (I_{A_j A_i})^{\circ}
$$
\n
$$
(I_{A_j A_k}) \sharp (I_{A_j A_j})^{\circ}
$$
\n
$$
(I_{A_j A_k}) \sharp (I_{A_j A_j})^{\circ}
$$

KORKAR KERKER DE KORO